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ABSTRACT 

In recent years, there have been increased global interests in space-related activities. Attitude determination and control are required in nearly all space 
missions. In satellites, it is one of the most important subsystems since the accuracy of the satellite mission depends on this subsystem. Mission 
objectives of satellites may be severely disrupted without correct attitude control. This paper describes the design, analysis and models of attitude 
control systems (ACS) for the Low-Earth Orbit (LEO) satellites. The mathematical models for dynamic and kinematics associated with these satellites 
and the designed optimal controller are briefly presented and linearized. With the aid of the powerful Computational tool of MATLAB, a program is 
developed for the design of the Linear Quadratic Regulator (LQR). The LQR is applied to the 3-axis stabilization and control of Microsatellite using 3-
reaction wheels each placed on one axis. Parameters of real Microsatellite are used to test and run the designed LQR controller with MATLAB software 
which accurately stabilized the attitude of the satellite system. The effects of various control design parameters on the overall system are analyzed and 
optimum control parameters, Q= diag([8,  8,  8,  8,  8,  8]), R = 0.1*diag([1,  1,  1]) and gain (K), that minimizes the performance index, are obtained. The 
Satellite system control design specifications of settling time ≤ 10 seconds, power consumption ≤ 0.3 watts and zero steady-state errors (0) are 
achieved. 

Keywords: Attitude Dynamics, Control System, Linear Quadratic Regulator, MATLAB, Microsatellites, Optimal Controller, Reaction Wheel, Three-axis 
Stabilization. 

 

1. Introduction 

In the 21sth century, the use of Low-Earth Orbit (LEO) 
satellites has increased with the great developments in 
space technologies. These satellites, ranging from Micro to 
Nano types, are deployed in orbit for various missions such 
as telecommunication, weather forecasting, taking images 
of Earth, ship movement surveillance, obtaining digital 
elevation maps of disaster areas, environmental tracking of 
some animals for scientific research and so on, [1]. LEO 
satellites fly between 600 km. and 1000 km. above the Earth. 
Satellites are deployed for various missions; hence, the 
attitude control system of satellites (ACS) is some of the 
most important subsystems of a satellite. This is because the 
accuracy of its space mission depends on this subsystem, 
[2]. The orientation in space with respect to different 
coordinate systems is referred to as the satellite attitude. 
Real-time or post-facto knowledge, and maintenance of a 
desired, specified attitude within a given  

 

 

tolerance in a satellite system is known as the attitude 
determination and control of satellite system (ADCS), [2]. It 
is the satellite’s visual sense and feeling in space especially 
in Microsatellites. ADCS is also needed for the pointing of 
solar arrays in proper direction relative to solar rays in 
order to absorb maximum energy for the satellite’s mission.  

The ACS system must maintain attitude control in the 
presence of constant disturbance torques on the satellite. 
Disturbance torques are functions of the inertial properties 
of a satellite and it’s orbital location. For Microsatellites in 
Low-Earth Orbit (LEO), the most common disturbance 
torques are caused by solar radiation pressure, interaction 
with Earth's local magnetic field, aerodynamic drag due to 
Earth's atmosphere, and gravity-gradient torque. These 
disturbances exert external torques, which build up angular 
momentum within the satellite, [3].

 

 

As a result of all these disturbance torques mentioned 
above, in time, the satellite tends to drift away from the 

desired attitude, hence, a suitable control system must be 
designed to offset these disturbances, [4]. 
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 In this paper, a linear quadratic regulator (LQR) is 
designed and implemented as controllers for the attitude 
control system (ACS). The actuators used for control are 
brushless DC three-reaction wheels (3-RWs). The 
computational tool of MATLAB is used to develop a 
program for the designed LQR. The effects of various 
control design parameters on the overall system are 
analyzed and optimum control parameters (Q and R) that 
minimizes the performance index, are obtained. The 
Satellite system control design specifications of settling 
time ≤ 10 sec, power consumption ≤ 0.3 watts and zero 
steady-state errors (0) are achieved. The developed 
program for the designed LQR can be applied to other 
industrial processes especially in the spacecrafts, 
navigational and missile control systems. Finally, the 
stability analysis is conducted using the Nyquist stability 
criterion to ensure that the designed controller and satellite 
system are stable. 

2.0 Design Objectives. 

• Design of a Linear Quadratic Regulator (LQR) 
controller for 3-axis (ACS) of Microsatellite. 

• Analysis of the effects of different Weighing 
Matrices, (Q and R) on the performance of the 
designed ACS. 

 

2.1       Performance Index 

A performance index is a quantitative measure of the 
performance of a system and is chosen so that emphasis is 
given to the important system specifications, [5]. For this 
design, the following performance indices are given, 

1.   𝐽(𝑥,𝑢) = 1
2 ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡∞

0                                                    

2. The settling time is to be ≤ 10 seconds, 

3. Power consumption ≤ 0.3 Watts and 

4. Zero (0) steady-state error / final value. 

 

3.0 Satellite Attitude Control Kinematics and Dynamic 
Models. 

Mathematical models of physical systems are key elements 
in the design and analysis of control systems. To 
understand and control the complex satellite system, a 
quantitative mathematical model of the system must be 
derived from basic relationship between system variables. 

3.1 Kinematic Equations for Satellite 

Kinematics of the satellite describes the orientation of the 
satellite. The differential equations are given in equations (1 
- 2). Detailed information about them can be found in [4, 3, 
and 1]. 

�̇� = − 1
2
𝜀𝑇𝜔𝑏𝑜

𝑏      (1) 

𝜀̇ = 1
2
𝜂𝜔𝑏𝑜

𝑏 − 1
2
𝜔𝑏𝑜
𝑏 × 𝜀    (2) 

Where 𝜀 = unit Quaternions,   𝜔𝑏𝑜
𝑏 = the angular velocity 

between the body and reference frames decomposed in the 
body frame. When equations (1) and (2) are combined, they 
can be represented as  equation (3), where 𝑆 is the cross 
product, [1].               

 �̇� = ��̇�𝜀̇� = 1
2
� −𝜀𝑇
𝜂𝐼3Χ3 + 𝑆(𝜀)�  𝜔𝑏𝑜

𝑏      (3) 

3.2 Dynamic Model of a Satellite 

Dynamic equations describe how velocity changes for a 
given force. According to Newton-Euler formulation 
presented in [4], [1], angular momentum, H changes 
according to applied torque. The total angular momentum 
of the spacecraft is, [2]. 

𝐻𝑏 = 𝐼𝜔𝑏 + ℎ𝑤      (4) 

Where I is the inertia matrix of the satellite, 𝜔𝑏 is the 
angular velocity of satellite in body frame and ℎ𝑤  is the 
angular momentum of the reaction wheels, which can be 
described in body frame as follows: 

ℎ𝑤 = 𝐿𝐼𝑤𝜔𝑤      (5) 

where 𝐼𝑤 = 𝑑𝑖𝑎𝑔(𝐼𝑤1, 𝐼𝑤2, … 𝐼𝑤𝑛) is the RW diagonal inertia 
matrix, [𝐿]3×𝑛 is the RW distribution matrix, and 𝜔𝑤 =
[𝜔𝑤1 𝜔𝑤2 … 𝜔𝑤𝑛]P

T is the angular speed of the wheels. The 
superscript 𝑛, refers to the number of RWs used, [2]. In this 
paper, 3-RWs are employed at the three-body axis to 
supply the control torques required to stabilize the satellite. 
Hence, n=3. 

From the Euler’s moment equations represented by the 
angular momentum rate with respect to the body frame, the 
following dynamics of the satellite can be described, (Sidi, 
1997). 

   𝑑
𝑑𝑡
𝐻𝑏 = −𝜔𝑏(𝑡) × 𝐻𝑏(𝑡) + 𝑇𝑑(𝑡)   (6) 

where 𝑇𝑑, represents torques generated on the satellite as a 
result of disturbances. 

From equation (4), the following can be derived; 
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 𝐻�̇� = �𝑑𝐻
𝑑𝑡
�
𝑏

= 𝐼 𝑑𝜔𝑏
𝑑𝑡

+ ℎ̇𝑤       (7) 

Equating equations (6) and (7): 

 𝐼 𝑑𝜔𝑏
𝑑𝑡

= −𝜔𝑏(𝑡) × 𝐻𝑏(𝑡) + 𝑇𝑑(𝑡) - ℎ̇𝑤     (8) 

By substituting equation (4) into (8): 

𝑑𝜔𝑏
𝑑𝑡

= 𝐼−1�−𝜔𝑏(𝑡) × (I𝜔𝑏 + ℎ𝑤) + 𝑇𝑑(𝑡)−  ℎ̇𝑤   �   (9)   

The reaction wheels work on the principle of momentum 
exchange, therefore the angular momentum produced by 
reaction wheels are transferred to the satellite with opposite 
sign, i.e.   

ℎ̇𝑤  = −𝑇𝑐           (10) 

where 𝑇𝑐 is the command torque, which is determined by 
the controllers. By substituting (10) into (9), the following 
dynamic equation can be obtained:    

  𝑑𝜔𝑏
𝑑𝑡

= 𝐼−1[−𝜔𝑏(𝑡) × (I𝜔𝑏 + ℎ𝑤) + 𝑇𝑑(𝑡) + 𝑇𝑐  ]          (11)  

 

3.3 Reaction Wheel Torque 

The torques generated by the 3-RWs can be defined 
alongside with the mathematical model of the satellite. 
Hence, for a 3-axis RW configuration, x, y and z, the 
torques are generally modeled by the following equation, 
[1]. 

𝜏𝑟𝑏 = (𝑑𝐿𝑟
𝑑𝑡

)𝑏 +𝜔𝑏𝑖
𝑏 × 𝐿𝑟 − 𝜏𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑏                      (12) 

𝜏𝑟𝑏  is the torque caused by reaction wheel,    

 𝐿𝑟 = [𝐿𝑟𝑥 𝐿𝑟𝑦 𝐿𝑟𝑧]P

T  = 𝐼𝑟𝜔𝑟 is the total moment vector of 
reaction wheel, 

𝜏𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑏  is the frictional torque caused by wheels and 
usually assumed to be zero. Then equation (12) yields; 

 𝜏𝑟𝑏 = (𝑑𝐿𝑟
𝑑𝑡

)𝑏 +𝜔𝑏𝑖
𝑏 × 𝐿𝑟 = �

𝜏𝑟𝑥
𝜏𝑟𝑦
𝜏𝑟𝑧

� = �
�̇�𝑟𝑥 + 𝐿𝑟𝑧𝜔𝑦 − 𝐿𝑟𝑦𝜔𝑧
�̇�𝑟𝑦 + 𝐿𝑟𝑥𝜔𝑧 − 𝐿𝑟𝑧𝜔𝑥
�̇�𝑟𝑧+𝐿𝑟𝑦𝜔𝑥 − 𝐿𝑟𝑥𝜔𝑦

�              

                (13) 

 𝜔𝑏𝑖
𝑏 = [𝜔𝑥 𝜔𝑦 𝜔𝑧]P

T    (14) 

The 3-RWs mounted each on one axis are used to apply 
control torques to rotate and maintain the satellite to the 
desired orientation. The task here is to develop a robust, 
rapid and appropriate controller. The Standard Orthogonal 
3-wheel configuration is applied in this design and its 

configurations with mathematical distribution matrices are 
given in equation (15), [1]. Each column vector represents 
the distribution of the reaction wheel torques on to the axis 
of rotation of the satellite. If 𝑇1,𝑇2,𝑇 3 represent the torques 
by each RW, then the moments acting on the satellite can be 
defined as, [1]; 

 [𝑇𝑥 𝑇𝑦 𝑇𝑧]𝑇 =  𝐿3×3[𝑇1 𝑇2 𝑇3]𝑇                 (15) 

 

Following the kinematics and dynamic mathematical 
models, the satellite rotation matrix is defined. Rotation 
matrix can behave as a transformation of a vector 
represented in one coordinate frame to another frame or as 
a rotation of a vector within the same frame or as a 
description of mutual orientation between two frames. The 
rotation matrix R, from frame a to b is denoted 𝑅𝑎𝑏. The 
rotation of a vector from one frame is written with the 
following notation: 

  𝑥𝑡𝑜 = 𝑅𝑓𝑟𝑜𝑚𝑡𝑜 𝑥𝑓𝑟𝑜𝑚                  (16) 

Angle-axis parameterization is a way of parameterization 
of the rotation matrix, given in equation (17) as  𝑅𝑓𝑟𝑜𝑚𝑡𝑜 , 𝑅𝜗 ,𝜃 
corresponding to a rotation 𝜃 about the 𝜗-axis as defined in 
[3], [1]. 

𝑅𝜗,𝜃 = 𝐼 + 𝑆(𝜗) sin𝜃 + (1− cos𝜃)𝑆2(𝜗)                (17) 

where S is the skew-symmetric operator.  

From the derived mathematical models of equations (1-13), 
it can be observed that they are still in their non-linear 
forms. For the purpose of this design, they must be 
linearized in order to apply the LQR controller that will be 
discussed in the subsequent section 4.4. Hence, linearized 
systems of matrix are defined. The linearization points for 
angular velocities (𝜔𝑖𝑏

𝑏 ), are selected as, [6], [7];  

 𝜔𝑖𝑏
𝑏 =  [�̇� �̇� �̇�]𝑇 + 𝜔0[−𝜓 −1 𝜙]𝑇  (18) 

𝜔𝑖𝑏
𝑏 , which is angular velocities of satellites in body axis 

(𝜔𝑖𝑏
𝑏 = 2𝜀̇) is linearized as, [6], [7]; 

  𝜔𝑖𝑏
𝑏 = �

𝜔𝑥
𝜔𝑦
𝜔𝑧
� = �

2𝜀1̇ − 2𝜔0𝜀3
2𝜀2 − 𝜔0

2𝜀3̇ + 2𝜔0𝜀1
� = �

�̇� − 𝜓𝜔0

�̇� − 𝜔0

�̇� +𝜙𝜔0

�              (19) 

Hence its time derivation is given as; 

 �̇�𝑖𝑏
𝑏 = �

�̇�𝑥
𝜔�̇�
𝜔�̇�
� = �

2𝜀1̈ − 2𝜔0𝜀3
2𝜀2̈

2𝜀3̈ + 2𝜔0𝜀1̇
� = �

�̈� − �̇�𝜔0

�̈�
�̈� + �̇�𝜔0

�          (20) 
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From equations (19 - 20) it can be observed that the 
following relations hold between the quanternions, 
(𝜀1, 𝜀2, 𝜀3) and the Euler angles, (𝜙, 𝜃,𝜓) as, 

 [𝜙 𝜃 𝜓]𝑇 = [2𝜀1 2𝜀2 2𝜀3]𝑇     (21) 

The Euler angles 𝜙, 𝜃, and 𝜓 are defined as the rotational 
angles about the satellite body axes:Roll 𝜙, about the 
𝒙 −axis; Pitch 𝜃, about the 𝒚 − axis; and Yaw 𝜓, about the 
𝒛 − axis. The term 𝜔0 represents the initial orbital angular 
velocity of the satellite. Hence, applying equations (18 – 20 
to equation (11), the following linearized mathematical 
models are obtained, [6], [7]; 

𝐼 𝑑𝜔𝑏𝑖
𝑏

𝑑𝑡
= �−𝜔𝑏𝑖

𝑏 (𝑡) × (I𝜔𝑏𝑖
𝑏 ) +  𝜏𝑔𝑏 + (𝑑𝐿

𝑑𝑡
)𝑏   �            (22) 

Applying the skew symmetric to equation (22) and 
arranging in component form yields; 

𝐼𝑥�̈� = 𝜙�4𝜔0
2�𝐼𝑧 − 𝐼𝑦�− 𝜔0�̇��𝐼𝑧 − 𝐼𝑦��+ �̇��̇� ��𝐼𝑦 − 𝐼𝑧��+

�̇�𝜔0�𝐼𝑧 − 𝐼𝑦 + 𝐼𝑧�+ ��̇�𝑟𝑥�                         (23a) 

𝐼𝑦�̈� = 3𝜔0
2(𝐼𝑥 − 𝐼𝑧)𝜃 + 𝜙[𝜓𝜔0

2(𝐼𝑥 − 𝐼𝑧) + �̇�𝜔0�𝐼𝑧 − 𝐼𝑥)] +
�̇�𝜓𝜔0(𝐼𝑥 − 𝐼𝑧�+ �̇��̇�(𝐼𝑧 − 𝐼𝑥) + ��̇�𝑟𝑦�     
       
                                (23b) 

𝐼𝑧�̈� = 𝜓�𝜔0
2�𝐼𝑥 − 𝐼𝑦�+ �̇�𝜔0�𝐼𝑦 − 𝐼𝑥��+ �̇�[𝜔0�𝐼𝑦 − 𝐼𝑥 − 𝐼𝑧�] +

�̇��𝐼𝑥 − 𝐼𝑦�] + ��̇�𝑟𝑧�                     (23c) 

The state-space equation for this system represented in 
linear form of equation (24) can be derived by defining the 
following states; 

 𝑥 = ��̇� �̇� �̇�     �̈� �̈� �̈�� and 𝑢 = ��̇�𝑟𝑥 �̇�𝑟𝑦 �̇�𝑟𝑧�P

T    
               (24a) 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵(𝑡)𝑢(𝑡)   ,   𝑦(𝑡) = 𝐶𝑥(𝑡) +𝐷𝑢(𝑡)  
               (24b) 

As a result, equation (23) results to equations (25) and (26); 

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡ �̇�
�̇�
�̇�  
�̈�
�̈�
�̈� ⎦
⎥
⎥
⎥
⎥
⎥
⎤

   =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0
0 0 0
0

4𝜔02�𝐼𝑧−𝐼𝑦�
𝐼𝑥
0
0

0
0

3𝜔02(𝐼𝑥−𝐼𝑧)
𝐼𝑦
0

0
0
0

𝜔02�𝐼𝑥−𝐼𝑦�
𝐼𝑧

   

1 0 0
0 1 0
0
0
0

𝜔0�𝐼𝑦−𝐼𝑥−𝐼𝑧�
𝐼𝑧

0
0
0
0

1
𝜔0�𝐼𝑧−𝐼𝑦+𝐼𝑧�

𝐼𝑥
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
𝜙
𝜃
𝜓 
�̇�
�̇�
𝜓 ̇ ⎦
⎥
⎥
⎥
⎥
⎤

+  

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0
0 0 0
0
1
𝐼𝑥
0
0

0
0
1
𝐼𝑦
0

0
0
0
1
𝐼𝑧

   

⎦
⎥
⎥
⎥
⎥
⎤

�
�̇�𝑟𝑥
�̇�𝑟𝑦
�̇�𝑟𝑧

�    (25) 

Output equation, 

 

⎣
⎢
⎢
⎢
⎢
⎡
𝜙
𝜃
𝜓  
�̇�
�̇�
�̇� ⎦
⎥
⎥
⎥
⎥
⎤

=  

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0
0 0 0
0
0
0
0

0
0
0
0

0
0
0
0

   

0 0 0
0 0 0
0
1
0
0

0
0
1
0

0
0
0
1⎦
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎡
𝜙
𝜃
𝜓  
�̇�
�̇�
�̇� ⎦
⎥
⎥
⎥
⎥
⎤

 + 0                   (26) 

Where 𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

0 0 0
0 0 0
0

4𝜔0
2�𝐼𝑧−𝐼𝑦�
𝐼𝑥
0
0

0
0

3𝜔02(𝐼𝑥−𝐼𝑧)
𝐼𝑦
0

0
0
0

𝜔02�𝐼𝑥−𝐼𝑦�
𝐼𝑧

   

1 0 0
0 1 0
0
0
0

𝜔0�𝐼𝑦−𝐼𝑥−𝐼𝑧�
𝐼𝑧

0
0
0
0

1
𝜔0�𝐼𝑧−𝐼𝑦+𝐼𝑧�

𝐼𝑥
0
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

𝐵=  

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0
0 0 0
0
1
𝐼𝑥
0
0

0
0
1
𝐼𝑦
0

0
0
0
1
𝐼𝑧

   

⎦
⎥
⎥
⎥
⎥
⎤

,   𝐶 =  

⎣
⎢
⎢
⎢
⎢
⎡
0 0 0
0 0 0
0
0
0
0

0
0
0
0

0
0
0
0

   

0 0 0
0 0 0
0
1
0
0

0
0
1
0

0
0
0
1⎦
⎥
⎥
⎥
⎥
⎤

,   𝐷 = 0 

 

3.4 Linear Quadratic Regulator Controller  

Design 

In this paper, LQR is the control technique used in attitude 
stabilization. It is a powerful control technique for 
designing linear controllers for complex systems that have 
stringent performance requirements. The main idea of the 
control system is to find a cost function and minimize this 
cost function. After the cost function is minimized, the 
system states are fed back by a gain-matrix. In (Wisniewski, 
et al, 1996; Hall, 2002; Lewis, 1998) [8], [6], and [9], LQR 
technique is further explained in detail. 

The linearized and time invariant systems in equations (25 
and 26) are applied in the control design. The optimization 
problem consists of finding a linear control law of the type, 
[8], [6]; 

𝑢(𝑡) = −𝐾𝑥(𝑡)                                                (27) 

where k is the feedback gain-matrix. To find the control 
signal ‘u’ that minimizes the cost function, the performance 
index (PI) is defined: 

𝐽(𝑥,𝑢) = 1
2 ∫ (𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡∞

0                                (28) 

Substituting (27) into equation (28) yields; 
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 𝐽 = 1
2 ∫ 𝑥𝑇(𝑄 +𝐾𝑇𝑅𝐾)𝑑𝑡∞

0                                         (29) 

The feedback gain matrix K has the form, 

𝐾 = 𝑅−1𝐵𝑇𝑃                                                             (30) 

where P is the solution of algebraic Riccati equation given 
in (31): 

 𝐴𝑇𝑃 + 𝑃𝐴 + 𝑄 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0                             (31) 

where 𝑄 ≥ 0,𝑅 > 0,𝑃 ≥ 0 are symmetric, positive definite  
and semi-positive  matrices respectively defined as state 
and control Weighting matrices, 

 𝑄 = 𝑑𝑖𝑎𝑔[𝑄1, 𝑄2, … 𝑄𝑛𝑆,]               (32a) 

 𝑅 = 𝑑𝑖𝑎𝑔[𝑅1, 𝑅2, … 𝑅𝑛𝑎 ,]                   (32b) 

Where 𝑛𝑠, is the number of the states and 𝑛𝑎, is the number 
of actuators, [8]. 

The selection of Q and R matrices are performed by 
adjusting them in the developed MATLAB code until the 
desired performance is achieved. There are several 
procedures for solving algebraic Riccati equation. The 
feedback gain matrix, K is calculated in MATLAB using the 
syntax command in (33); 

[𝐾,𝑃,𝐸] = 𝑙𝑞𝑟(𝐴,𝐵,𝑄,𝑅)      (33)                           

𝑙𝑞𝑟(𝐴,𝐵,𝑄,𝑃) calculates the optimal gain matrix K such that 
the state-feedback law, u = − Kx , minimizes the quadratic 
cost function in equation (29) for the state-space model. T is 
taken as the simulation time and 𝑡0 is taken as zero in 
equation (29). The MATLAB syntax; lqr also returns the 
solution P of the Ricatti equation given in equation (31) and 
the closed-loop eigenvalues E=eig(A-B*K). The block 
diagram showing the optimal configuration of the designed 
system is shown in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1 presents the parameters for satellite system 
simulation. 

TABLE 3.1. Parameters for Satellite Simulations, [1]. 

      Satellite 
parameters 

                         
Values 

                  
Units 

Satellite weight       120                    
Kg 

Satellite Inertia Matrix 𝐼𝑥 = 9.8194, 𝐼𝑦 =
9.7030, 𝐼𝑧 =
9.7309   

                  
Kg𝑚2 

Orbit    686 (LEO orbit)                 
Km 

Orbit angular velocity,  
𝜔0 

   0.0010764               
Rads/sec 

Initial Roll angle, [𝜙0]               3             
Degrees 

Initial Pitch angle, [𝜃0]               1             
Degrees 

Initial Yaw angle, [𝜓0]               1      
Degrees 

Initial angular 
velocities            
[𝜙,      𝜃,      𝜓] 

                          
    [0 0 0] 

                                            
Rads/sec 

 

Figure 3.2 presents the algorithm adopted for the LQR 
controller design. 

4.0 Results and Discussion 

The choices of Weighting Matrices affect the Control system 
performance. Figure 4.1 show the effects of different 
Weighting Matrices, Q and R on the control system 
performance. Firstly, the Q-Matrix is kept constant at Q1= 
diag([1,  1,  1,  1,  1,  1]) while the R-Matrix is varied 
between R1a = 0.1*diag([1,  1,  1,]) to R1d = diag([10,  10,  
10]). The resulting responses of the satellite angular 
velocities for the 3-axis are show in     figures 4.1a to 4.1c. .  

Fig 3.1.  Block Diagram of LQR optimal controller for the 
satellite system. 
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Fig 3.1.  Block Diagram of LQR optimal controller for the 
satellite system. 
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MATLAB programs developed for the design of the LQR 
are given in Appendix A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3-axis attitude to zero degrees 

 

Weighting Matrices, Q and R 
adjustment 

Are Design 
specifications 

Achieved? 

YES 

NO 

See figure 3.8a and 

  𝜙,𝜃 & 𝜑 Angles 

    Equations (3.20) to (3.62) 

LQR controller given;  

See equations (3.71) – (3.77) 

If the performance meets the specifications, then 
finalize the design.                                        

 

Establish the Control goals       

Identify the Variables to be    Controlled 

Define Control Design Specifications/ Performance 
Index              

             
Establish the system configuration  

Obtain a model of the Process, the actuator and the 
satellite. 

Describe a Controller and select key parameters to 
be adjusted   

 

Optimize the parameters and analyze their           
Performance  

𝐽(𝑥, 𝑢) =
1
2
�(𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡
∞

0

 

3 Specifications and PI 

Settling time ≤ 10 seconds 

Power consumption ≤ *** 

Zero steady-state error/ final value 

 

Fig 3.2. LQR controller design algorithm for the ACS. 
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Fig 4.1a. Step response with Weighting Matrices Q1= 
diag([1,  1,  1,  1,  1,  1]) and R1a =  0.1*diag([1,  1,  1,]) 

  
Fig 4.1b. Step response with Weighting Matrices Q1= 
diag([1,  1,  1,  1,  1,  1]) and R1c = diag([5,  5,  5]). 

Fig 4.1c. Step response with Weighting Matrices Q1= 
diag([1,  1,  1,  1,  1,  1]) and R1d= diag([10,  10,  10]). 

Again, the Weighting Matrix R is kept constant while the 
Q-Matrix is varied from Q2= diag([2,  2,  2,  2,  2,  2]) to Q5= 
diag([8,  8,  8,  8,  8,  8]). The effects are seen on the response 
of the system as shown in the plots of figures 4.2a to 4.2c. 

Fig 4.2a. Step response with Weighting Matrices Q2= 
diag([2,  2,  2,  2,  2,  2]) and R1 = 0.1*diag([1,  1,  1]). 

 
Fig 4.2b: Step response with Weighting Matrices Q4= 
diag([6,  6,  6,  6,  6,  6]) and R1 = 0.1*diag([1,  1,  1]). 

Fig4.2c. Step response with Weighting Matrices Q5= 
diag([8,  8,  8,  8,  8,  8]) and R = 0.1*diag([1,  1,  1]). 

The resulting settling time, steady-state error/final value 
and amplitudes of the angular velocities for the 3-body axis; 
Roll 𝜙, Pitch 𝜃, and Yaw 𝜓, for different control 
parameters/Weighting Matrices are presented in table 4.1. 

Step Response for Weighting Matrices, Q1 = diag([1, 1, 1, 1, 1, 1]);
R1a = 0.1 * diag([1, 1, 1]);
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Peak amplitude: 0.107
Overshoot (%): Inf
At time (seconds): 1.17

System: Yaw
Peak amplitude: 0.182
Overshoot (%): Inf
At time (seconds): 1.56

System: Yaw
Rise time (seconds): 0

System: Pitch
Settling time (seconds): 11.7

System: Roll
Settling time (seconds): 23.1

System: Yaw
Final value: 0

System: Pitch
Final value: 0

System: Yaw
Settling time (seconds): 5.64

 

 

Roll
Pitch
Yaw

Step Response with Weighting Matrices, Q1 = diag([1, 1, 1, 1, 1, 1]);
R1c = diag([5, 5, 5]);
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Step Response with Weighting Matrices, Q1 = diag([1, 1, 1, 1, 1, 1]);
R1d = diag([10, 10, 10]);
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Step Response with Weighting Matrices, Q2 = diag([2, 2, 2, 2, 2, 2]);
R1 = 0.1*diag([1, 1, 1]);
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Step Response with weighting Matrices, Q4 = diag([6, 6, 6, 6, 6, 6]);
R1 = 0.1*diag([1, 1, 1]);
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Step Response with Weighting Matrices, Q5 = diag([8, 8, 8, 8, 8, 8]);
R1 = 0.1*diag([1, 1, 1]);
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From table 4.1, it can be observed that keeping the 
Weighting matrices Q, constant while increasing R results 
in a more robust system response. These are observed with 
the decreasing peak amplitude from 0.107 rads/sec to 0.0109 
rads/sec, from 0.249 rads/sec to 0.0819 rads/sec and from 
0.0819 rads/sec to 0.027 rads/sec for the Roll, Pitch and 
Yaw-axis respectively. However, there are poor transient 
responses of the system as the settling time of the satellite 
body axes increases. These are observed in the increase of 
the settling time from 23.1sec to 148.5sec, from 11.7sec to 
39.1sec, and from 5.6sec to 18.5sec for the Roll, Pitch and 
Yaw-axis respectively.  

Secondly, the effects of varying Q-matrix while keeping R-
matrix constant are investigated and their various time 
responses presented in table 4.2. From table 5.2, it can be 
observed that increasing Q-matrix while keeping R-matrix 
constant results to better transient performance of the 
satellite system. Decreases in the 3-body axis settling time 
from (23.13 to 10.2) seconds, from (11.72 to 5.51) seconds 
and from (5.64 to 5.52) seconds for Roll, Pitch and Yaw axes 
respectively are observed.  

 TABLE 4.1. Control Parameters with Their Resulting Time 
Responses; Keeping Q1 constant at      Q1 = diag([1, 1, 1, 1, 
1, 1]); while varying R-matrix . 

Control 
Parameters (Q 
and R) 

States/ 
Euler 
Angles 

Settling 
Time 

(Sec) 

Steady
- State 

Error/ 
Final 
value 

Peak 

Amplitude 

(Rads/ sec) 

Q1 = diag([1, 
1, 1, 1, 1, 1]); 
R1a = 0.1 * 
diag([1, 1, 1]); 

Roll, �̈� 23.1 0 0.107 
Pitch, �̈� 11.7 0 0.249 

Yaw, �̈� 5.6 0 0.182 
Q1= diag([1,  
1,  1,  1,  1,  1]) 
and  R1c = 
diag([5,  5,  
5]). 

Roll, �̈� 113.9 0 0.0156 
Pitch, �̈� 32.8 0 0.0972 
Yaw, �̈� 16.4 0 0.037 

Q1= diag([1,  
1,  1,  1,  1,  1]) 
and R1d = 
diag([10,  10,  
10]). 

Roll, �̈� 148.5 0 0.0109 
Pitch, �̈� 39.1 0 0.0819 
Yaw, �̈� 18.5 0 0.027 

 

From the results of the plots of figures4.1, and 4.2, and 
tables 4.1 and 4.2, it is observed that the optimum control 
parameters occur with the Weighting matrices; Q5= diag([8,  

8,  8,  8,  8,  8]) and R1 = 0.1*diag([1,  1,  1])   with the fastest 
settling time of 10.2sec, 5.51 sec and 5.52sec for Roll, Pitch 
and Yaw axes respectively. The peaks are 0.284rads/sec, 
0.409rads/sec and 0.365rads/sec for Roll, Pitch and Yaw 
axes respectively. Equivalent torques generated on the 
satellite 3-body axes are shown in figure 4.3. 

TABLE 4.2. Control Parameters with Their Resulting Time 
Responses; Keeping R constant at R = 0.1*diag([1,  1,  1]) 
while varying Q-matrix. 

Control 
Parameters 
(Q and R) 

States/ 
Euler 
Angles 

Settling 
Time  
(Sec) 

Steady- 
States 

Error/ 
Final 
value 

Peak 

Amplitude 

(Rads/ sec) 

Q2= diag([2,  
2,  2,  2,  2,  
2]) and  R1 
= 
0.1*diag([1,  
1,  1]). 

Roll, �̈� 23.13 0 0.107 
Pitch, �̈� 11.72 0 0.249 

Yaw, �̈� 5.64 0 0.182 

Q4= diag([6,  
6,  6,  6,  6,  
6]) and R1 = 
0.1*diag([1,  
1,  1]). 

Roll, �̈� 11.43 0 0.235 
Pitch, �̈� 5.74 0 0.368 
Yaw, �̈� 5.51 0 0.319 

Q5= diag([8,  
8,  8,  8,  8,  
8]) and R1 = 
0.1*diag([1,  
1,  1]). 

Roll, �̈� 10.2 0 0.261 
Pitch, �̈� 5.51 0 0.391 
Yaw, �̈� 5.52 0 0.345 

 

As can be observed from figure 4.3, the torques on the 
satellite 3-body axes generated by the reactions are; 
0.275Nm, 0.613Nm and 0.474Nm for the Roll, Pitch and 
Yaw axes respectively.  
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Fig 4.3. Torque generated on the satellite 3-body axis. 

The equivalent power consumption corresponding to the 
maximum torque, (0.613Nm) is, 

Power = Torque*Angular velocity (Watts)   (34) 

= 0.613*0.391 = 0.239 Watts. 

The corresponding optimal gain matrix, [K] from the state 
feedback law as defined in equation (27), u=-kx, that 
minimizes the quadratic cost function in equation (29) is 
obtained with the MATLAB code of equation (40); 

>>  [𝐾,𝑃,𝐸] = 𝑙𝑞𝑟(𝐴,𝐵,𝑄5,𝑅)     (35) 

The following results are obtained for the gain, [K] the 
solution of Ricatti equation, (S), and the Eigenvalues, of the 
closed – loop system, (E=eig(A-B*K)) as ; 

K = 

    7.9092    0.0000   -4.1766   21.1629    0.0000   -7.1351 

    0.0000    8.9443    0.0000    0.0000   15.9272   -0.0000 

    4.1766   -0.0000    7.9092   -7.2050   -0.0000   13.5099 
      (36) 

P = 

   21.4009    0.0000   -0.0091    7.7542    0.0000    4.0549 

    0.0000   14.2457    0.0000    0.0000    8.6838   -0.0000 

   -0.0091    0.0000   13.6697   -4.0947    0.0000    7.6789 

    7.7542    0.0000   -4.0947   20.7479    0.0000   -6.9952 

    0.0000    8.6838    0.0000    0.0000   15.4633   -0.0000 

    4.0549   -0.0000    7.6789   -6.9952   -0.0000   13.1164 
     (37) 

E = 

  -1.1160 + 0.9383i, -1.1160 - 0.9383i, -0.8565 + 0.0000i 

  -0.4616 + 0.0000i, -0.8202 + 0.4984i, -0.8202 - 0.4984i  
     (38) 

To further ascertain the validity and stability of the 
designed controller, the Nyquist plots of the entire satellite 
system with the designed controller are plotted in figures 
4.4. 

  
Fig 4.4a. Nyquist Plot for Optimum Designed Roll-Axis for 
the ACS. 

  
Fig 4.4b. Nyquist Plot for Optimum Designed Pitch-Axis 
for the ACS.  

 

Figure 4.4c: Nyquist Plot for Optimum Designed Yaw-Axis 
for the ACS 

From the Nyquist plots, it is observed that the -1 point on 
the Real-axis for the Roll, Pitch and Yaw-axis are not 
circled; hence the designed LQR controller and system are 
stable.  

Nyquist Diagram for Optimum Designed Roll-Axis for the ACS
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Nyquist Plot  for Optimum Designed Pitch-Axis for the ACS
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 Nyquist Plot for Optimum Designed Yaw-Axis for the ACS.	
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5.0 Conclusion 

In an effort to reduce settling time, steady-state error and 
power consumption of a LEO Microsatellite, an LQR 
controller is designed and analyzed for the attitude control 
system. For the designed LQR, it is demonstrated that by 
careful adjustment of the Weighting matrices, Q and R, the 
system performance (settling time, steady-state error, and 
power consumptions) can be modified to achieve design 
specifications. This agrees with previous researches on LQR 
by, [8], [6] and [9]. A MATLAB program is developed for 
the design of the LQR. 

Finally, the designed Optimal LQR controller is able to 
meet the design goals; settling time ≤ 10 seconds, power 
consumption ≤ 0.3watts and zero steady-state error / final 
value. The LQR controller designed in this paper can be 
implemented in the control of other dynamic industrial 
plants processes, especially in Aircrafts, Navigation and 
Missile control systems. 
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Appendix  

 MATLAB Program Codes. 

%% System matrices for the entire plant: 3 inputs 
(𝝓,𝜽𝒂𝒏𝒅 𝝍), 3 outputs (�̇�, �̇� 𝒂𝒏𝒅 �̇�) ) without controller % 

A = [ 0 0 0 1 0 0;0 0 0 0 1 0;0 0 0 0 0 1;   

1.807*10^-8 0 0 0 0 1.07*10^-3;0 3.171*10^-8 0 0 0 0; 

0 0 1.989*10^-8 -1.892 0 0 ]; 

B = [ 0 0 0;0 0 0;0 0 0; 0.102 0 0; 0 0.103 0; 0 0 0.103]; 

C = [ 0 0 0 0 0 0;0 0 0 0 0 0;0 0 0 0 0 0; 

    0 0 0 1 0 0;0 0 0 0 1 0;0 0 0 0 0 1 ]; 

D = [ 0 0 0;0 0 0;0 0 0; 0 0 0;0 0 0;0 0 0]; 
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%% Construct inputs and outputs corresponding to steps 
in xi and Cxi positions (i=1, 2, 3) %% 

%% The vectors x1d, x2d and x3d correspond to the states 
that are the desired equilibrium states for the system. The 
matrices Cx1, Cx2 and Cx3 are the corresponding 
outputs%%%The way these vectors are used is to 
compute the closed-loop system dynamics as; %% 

% x-dot = Ax + B u =>x-dot = (A-BK) x + K xid % 

% u = -K(x - xid);  y = Cxi %  

%% The closed-loop dynamics can be simulated using the 
"step" command, with K*xid as the input vector (assumes 
that the "input" is unit size, so that xid corresponds to the 
desired steady-state) %% 

x1d = [1; 0; 0; 0; 0; 0]; Cx1 = [0 0 0 1 0 0]; 

x2d = [0; 1; 0; 0; 0; 0]; Cx2 = [0 0 0 0 1 0]; 

x3d = [0; 0; 1; 0; 0; 0]; Cx3 = [0 0 0 0 0 1]; 

% Start with a diagonal weighting% 

Q1 = diag([1, 1, 1, 1, 1, 1]); 

R1a = 0.1 * diag([1, 1, 1]); 

K1a = lqr(A, B, Q1, R1a); 

    % Close the loop: x-dot = Ax + B K (x-xid) % 

Roll = ss(A-B*K1a,B(:,1)*K1a(1,:)*x1d,Cx1,0); 

Pitch = ss(A-B*K1a,B(:,2)*K1a(2,:)*x2d,Cx2,0); 

Yaw = ss(A-B*K1a,B(:,3)*K1a(3,:)*x3d,Cx3,0); 

figure (4.1a); step(Roll, Pitch, Yaw,50);grid; 

% Look at different input (R1b) Weightings keeping Q1 
constant% 

Q1 = diag([1, 1, 1, 1, 1, 1]); 

R1c = diag([5, 5, 5]); 

K1b = lqr(A, B, Q1, R1c); 

% Close the loop: xdot = Ax + B K (x-xd)% 

Roll = ss(A-B*K1b,B(:,1)*K1b(1,:)*x1d,Cx1,0); 

Pitch = ss(A-B*K1b,B(:,2)*K1b(2,:)*x2d,Cx2,0); 

Yaw = ss(A-B*K1b,B(:,3)*K1b(3,:)*x3d,Cx3,0); 

figure(4.1b); step(Roll, Pitch, Yaw,50);grid; 

% Look at different input (Q4), Weightings keeping R1 
constant%  

Q4 = diag([6, 6, 6, 6, 6, 6]); 

R1 = 0.1*diag([1, 1, 1]); 

K4 = lqr(A, B, Q4, R1); 

% Close the loop: xdot = Ax + B K (x-xd) 

Roll = ss(A-B*K4,B(:,1)*K4(1,:)*x1d,Cx1,0); 

Pitch = ss(A-B*K4,B(:,2)*K4(2,:)*x2d,Cx2,0); 

Yaw = ss(A-B*K4,B(:,3)*K4(3,:)*x3d,Cx3,0); 

figure(4.2b); step(Roll, Pitch, Yaw,50);grid 

% Optimum Weighting Matrices, (Qd, Rd) % 

Q5 = diag([8, 8, 8, 8, 8, 8]); 

R1 =0.1* diag([1, 1, 1]); 

Kd = lqr(A, B, Q5, R1); 

% Close the loop: xdot = Ax + B K (x-xd)% 

Roll = ss(A-B*Kd,B(:,1)*Kd(1,:)*x1d,Cx1,0); 

Pitch = ss(A-B*Kd,B(:,2)*Kd(2,:)*x2d,Cx2,0); 

Yaw = ss(A-B*Kd,B(:,3)*Kd(3,:)*x3d,Cx3,0); 

figure(4.2c); step(Roll, Pitch, Yaw,50);grid; 

%Compute Torque on the satellite body% 

Torque1=(K5*(Roll^2)); 
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Torque2=(K5*(Pitch^2)); 

Torque3=(K5*(Yaw^2)); 

step(Torque1,Torque2,Torque3,50);grid 

xlabel('Time(Sec)'),ylabel('Torque(mNm)') 

title('Torque on the Satellite Body');grid 
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